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Abstract—Electric field distributions and attenuation con-

stants of the eigenmodes in uniformly bent circular hollow

waveguides have been evaluated based on a vector wave equa-

tion deduced from Maxwell’s equations. A diagram represen-

tation of the parameter describing mode properties has been
newly introduced. It is numerically shown that vector modes
gradually approach linearly polarized modes when the bending

radius becomes small. A relation between attenuation constants
in sharply bent circular and slab hollow waveguides is also dis-
cussed where the electric fields concentrate near the outer edge
of the core.

I. INTRODUCTION

c IRCULAR hollow waveguides have been studied for

delivering infrared high power [1], ~2]. In practical

uses, these waveguides are often bent, hence, electric and

magnetic field distributions are deformed and transmis-

sion losses increase. Therefore, it is important to evaluate

field distributions and losses in bent circular hollow wave-

guides precisely.

In uniformly bent waveguides, a vector analysis was

developed by using perturbation theory [3]1. Although the

field deformations and polarization changes in wave-

guides were analyzed in detail, the analysis itself is lim-

ited to the waveguides with, a large bending radius. Marhic

et al. analyzed a whispering-gallery waveguide where the

bending is an essential issue [4]. They employed a bound-

ary condition used in the microwave regions which is not,

necessarily applied to infrared waveguides. A ray analysis

=1,2,”” “) which are not linearly polarized except for

the HE1~ modes. When ‘waveguides are bent, many modes

are excited. Therefore, it is important to explore the prop-

erties of vector modes in bent circular waveguides.

In this paper, we treat several lower-order TEO1, TMO1,

and HE21 modes. To solve a vector wave equation, we

express a solution of the equation by a linear combination

of linearly polarized modes derived from a corresponding

scalar equation. The mode structures and attenuation con-

stants of the TEO1, TMO1, and HE21 modes in bent circular

hollow waveguides have been clarified. Throughout the

paper, the wavelength is assumed to be 10.6 ym of the

C02 laser.

II. FORMULATION

We analyze low-loss circular hollow waveguides for in-

frared laser beams. We assume that the core radius is

much larger than the wavelength of transmitted light and

that the normalized surface impedance z~~ and admittance

y~~ [7] defined at the core-cladding boundary are suffi-

ciently small compared with the impedance and admit-

tance in the core region. We are interested in the wave-

guide whose bending radius is larger than several tens

times of the core radius.

Using the toroidal coordinate system (r, 6, z) as shown

in Fig. 1, the transverse electric field Et with the axial

(z-direction) phase constant 6, satisfies

was also made by Croitoru et al. which is substantially

based on an approximate scalar equation [5]. a ‘Et

In a previous paper [6], we analyzed the lowest eigen-
—+
&-2

~mode in bent circular hollow waveguides based on the

scalar equation. The field distributions were first evalu- +
ated by assuming that they vanish at the core-cladding

boundary and attenuation constants were then evaluated

1 aE, 1 a2E,
–—+~—
r & r a02

n~k~
(

l+2; cose
)1

- ~’ Et = O, (1)

by using an integral expression which inlcludes the sp- in the core region [6], where k. is, the wavenumber in free

proximate fields. space. We solve (1) with the boundary conditions at r =

In straight circular hollow waveguidcs, there exist z

‘1’Eom, TMom, HEn~ and EHn~ modes (n = 1, 2, “ o 0, m
EO W#lo
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Fig. 1. .Toroidal coordinate system for bent circular hollow waveguides.

First, we consider the transverse electric field Et which

satisfies the following boundary conditions at r = T:

ZTE = JJTM = O. (3)

i.e.,

E, = o. (4)

By letting the axial phase constant be ~ which corre-

sponds to Et, Et satisfies

H+ngk~ l+2; cose
)1

- B2E, = o, (5)

in the core region.

Modes which satisfy (4) and (5) are characterized by

linearly polarized modes, which are constructed from even

symmetrical ~= and odd symmetrical -l?Oscalar modes with

respect to 9.

We now expand E. and EO by using the Fourier-Bessel

series as follows:

()I?.(r, 0) = ~ ~ A~PJ, OUP~ cos (vO), (6a)
V=op=l

()

l?O(r, 6) = ~ ~ A~pJV OVP1
T

sin (z@, (6b)
~=lp=l

where UVPis the pth zero of Ju(x). The expansion coeffi-

cients A& A~p and the axial phase constants ~, and DO,
which correspond to even and odd modes respectively,

are determined by substituting (6a) and (6b) to (5) and

using the orthogonal relations by Bessel or trigonometric

functions [6]. R should be noted that A~p, Asp, ~~, and PO

are a function only of bending parameter b [6] defined by

(7)

We now describe how to derive the vector field Et sat-

isfying the boundary conditions (2a) and (2b) by using

fields E, satisfying (3). The method employed here is sim-

ilar to that developed by Snyder et al. [8] who derived

vector modes in weakly guiding fibers fibers from the LP

modes in a scalar wave equation. The essential difference

between weakly guiding fibers and present hollow wave-

guides is that the cladding indices are completely different

in the two cases, i.e., in infrared hollow waveguides the

(complex) refractive index is much higher than that of the

hollow core. However, both waveguides have a very sim-

ilar property in that modes whose axial phase constants

are around no k. are nearly degenerate. Therefore, it is

easily understood that we are able to construct vector

modes in even bent hollow waveguides by combining lin-

early polarized modes in the scalar wave equation.

Applying Green’s theorem to the surface integral of

E, o [(1)] – Et. [(5)] in the core region, we obtain

where S is a cross sectional area of circular core and the

C is the periphery defined by r = T.

Let us express the transverse electric field Et of vector

modes by linear combinations of the linearly polarized

modes .fEX and j~Y as

E,(r, 0) = fPX~X + jPYl?Y, (9)

where f and j are unit vectors in the x and y directions,

respectively, and PX and PV are arbitrary constants to be

determined. As is seen from the subsequent formulation,

there are only combinations of l?X and EY which are even

and odd, respectively, with respect to 0, or vice versa.

Since a number of even or odd linearly polarized modes

exist, the combinations of linearly polarized modes should

be considered. However, for the waveguides which will

be treated in Section III, only the combination of an even

linearly polarized mode and an odd linearly polarized

mode with the same mode number is important. There-

fore, we consider the linear combinations of only two lin-

early polarized modes described by (6a) and (6b) in the

subsequent formulation.

We first consider the case that I?x = ~. and ~Y = -l?Oin

(9). Since E, should not vanish at r = T in the vector

modes, the transverse electric field at r = T can be rep-

resented as follows [see Appendix]:

+f’ ‘(YTM‘zT~)sin6cos6
y & 1

{

al?
+j px~(y~M ‘zT~)sinf)cos6

11
+ PY ~ ( zT~ COS2 6 + YTM Sk2 6) . (lo)
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We now substitute (9) and (10) into (8). By putting

E, =fE@, we obtain

PX((32 – ~:) + &[Px[zTE$J!g%n(l)&

‘YTM +C(~COSo~dc)

$

aEeaE .
1

+ ~y(YTM– ZTE) — J Sm 6 COS 6 d. = O,
c th- &-

(lla)

similarly, by putting El = j~O in (8), we obtain

Py(p2 – f3:) + --&[Py[Z,.E$&’m+k

‘YTM $C($S,no~d.)

$

ag ag+ ~x(YTM– Z1.E)
1

——sin6cos0dc =0,
c f% &

(llb)

where E, and ,??Oare normalized such that the integral of

~2 or ~~ over the cross section is unity. Equations (1 la)

aid (1 lb) are simultaneous equations which determine PX,

PY, and fl.

By introducing the normalized transverse phase con-

stant U of vector modes defined by

U = T(n~k~ – f12)1i2, (12)

(1 la) and (1 lb) are transformed to the matrix equation as

‘(;)=U2(3 (13)

where elements of M are represented as follows:

M,, = 0; + &[zTET3$c($s~nd~d.

+ y~~T3
$C(%os’yd.]

(14a)

M,a = M*, =
+

a~e a~o

*T ( YTM – ZTE) T’ — —c th- tk

“ sin 0 cos 0 d., (14b)

~. and ~0 are defined by (12) where @ is replaced by the

axial phase constants PC and PO of even and odd sym-

metrical linearly polarized modes, respectively. As is seen

from (14a) -(14c), vector modes are completely charac-

terized by the bending parameter b and the waveguide pa-

rameters of ZTE/n. k. T and yTM /n. k. T. Two independent

vector modes are derived from (13). When only the term

with v = 1 and p = m remains in (6a) and (6b) in straight

waveguides, bending characteristics of the TMo~ and

HEfi~ modes [8] are derived.

Similarly, considering the case that ~X = ~0 and ~Y =

EC in (9), two other independent vector modes are de-

rived. For the modes where the term with v = 1 and p =

m is dominant in (6a) and (6b), bending characteristics of

the HE ~~ [8] and TEo~ modes in straight waveguides are

derived.

III. EIGENMODES IN BENT CIRCULAR HOLLOW

WAVEGUIDES

In this section, we numerically evaluate field d&ribu-

tions and attenuation constants of the TEO1, TMO1,

HE~l, and HE~l modes in bent circular hollow wave-

guides as vector modes. We clarify mode properties of the

zinc-selenide coated silver hollow waveguide which is de-

signed so as the transmission loss becomes minimum, sil-

ica hollow, and sapphire hollow waveguides. The param-

eters which are used in the numerical analysis of each

waveguide are summarized in Table I.

A. Polarization Properties of Eigenmodes

In order to see mode property changes due to bend, we

newly introduce a parameter Q defined by

Q = (py/px)/(l + lPY/P,12)1i2, (15)

which indicates a relative magnitude between E. and EY.

Fig. 2 shows the parameter Q of the above modes in

silica hollow, sapphire hollow, and zinc-selenide coated

silver hollow waveguides in the complex Q-plane. In

straight waveguides (b = O), the parameter Q of the TMol

and HE~l modes is equal to 1/~ and that of HE~l and

TEOI modes is – 1/~. That the value of Q is complex

means that the local electric fields are elliptically polar-

ized with different aspect ratios. When the parameter b

becomes large, the parameter Q in all waveguides ap-

proaches O in the TMOI and. HEjl modes, and IQI ap-

proaches unity in the HE~l and TEOI modes, which means

that the TMol and TEO1 modes change to linearly polar-

ized (LP) mode whose polarization direction is in the x

axis, and the HE~l and HE~l modes change to the LP mode

whose polarization direction is in the y axis.

As described in Section III-B, the electric field distri-

bution of each mode tends to concentrate near the outer

edge of the waveguide around 0 = O. This indicates that

the polarization of each mode is quite influenced by the

boundary conditions at 19 = O. As the round structure
therefore quite resemble to the slab waveguide, there exist

independent linearly polarized modes whose polarizations

are perpendicular and parallel to the bending plane.

Loci of Q show very different behaviors between the

silica hollow waveguide and others. Loci in the silica hol-

low waveguide tend to vary away from the real axis, while
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,, TABLE I
ZTB/rzOkO T and yT~/rzOkO TIN SILICA, SAPPHIRE, AND ZINC-SELENIDE COATED SILVER

HOLLOW WAVEGUIDES, WHERE A = 10.6 pm, no = 1,

and T = 0.5 mm

Cladding Material z~~/nO k. T Ym/noko T

Silica 1.7 x 10-3 +j9.7 x 10-5 8.4 x 10-3 –j2.9 x 10-4
Sapphire 1.6 x 10-4 + j4.5 x 10-3 2.6 X 10-4 +j2.O X 10-3
ZnSe-coated-Ag 2.7 x 10-5 -tj2.4 x 10-3 7.6 x 10-5 –j5.6 X 10-3

[m(Q]

J

‘j
(a)

J

(b)

lm(Q)

‘j

(c)

Fig. 2. Loci of Q in silica hollow (a), sapphire hollow (b), and zinc-sel-
enide coated silver hollow waveguides (c), in the complex plane. The num-
bers near curves indicate values of b. A radius of the circle drawn by a
dashed line is 1/&.

‘a)@@
(b)

@

(c)

b=2 b=5 b=10

Fig. 3. Change of electric field lines of the TEOl (a), TMOI (b), HE$I (c),
and HE~l modes (d), due to bent.

loci in others vary almost along the real axis. This differ-

ence comes from waveguide parameters as shown in Ta-

ble I: in the silica hollow waveguide, we have

Re (ZTE /rzo k. ~) s> lrn (ZTE/nO ~o ~), (16a)

Re ( yT~/nokO T) >> Im ( yT~/n#O T), (16b)

and in others, we have

Re (ZTE/noko ~) << Irn (zTE/~0~0 ~), (16c)

Re ( yTM/nOkO T) << Im ( yTM /noko T). (16d)

Fig. 3(a)-(d) shows changes of electric field lines of

the TEO1, TMol,’ HEfil, and HE~l modes due to bends in

the zinc-selenide coated silver hollow waveguides where

Q is approximately real. One can see how the vector

modes approach LP modes whose polarization direction

is in the x or y direction.

B. Electric Field Intensity Distributions of Linearly

Polarized Modes

As mentioned in Section III-A, eigenmodes in bent cir-

cular hollow waveguides approach linearly polarized

modes when” the parameter b increases, i.e., the curvature

increases. Therefore, we calculate intensity distributions
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b=20 b=50 b=200

Fig. 4. Equ\-field amplitude lines oftransverse electric field distributions

of linearly polarized even mode (a) and odd mode (b). Equi-field lines
indicate +0.1, +0.3, +0.5, +0.7 and ~0.9, where thcmaximumarnpli-

tude is normalized to unity.

of the even and odd LPI 1 modes whose nomenclature is

given in a straight waveguide.

Fig. 4(a) and (b) shows equi-intensity lines of the even

and odd symmetric LPI I modes for various curvatures. In

the case of the odd symmetric LPI ~mode (b), electric field

distributions tend to concentrate near the outer edge with

maintaining its field profile as curvature. On the other

hand, a very different picture is found for the even sym-

metric mode (a) from that of the straight waveguide. There

are three peaks near the outer edge of the waveguide per-

pendicular to the bending plane. As the waveguide is bent,

inner and outer peaks of field distributions shift toward

the outer edge and approach each other. The outer peak

is larger than the inner peak. Then, the center of the inner

peak may be canceled by the outer peak ‘when the both

peaks approach each other. This is why the inner peak is

separated into two peaks.

C. Attenuation Constants of Eigenmodes

By approximating the real part of 13by n{)kO in (12), the

attenuation constant is represented by

za = Im (U2)

no k. T2 “
(17)

Fig. 5 shows the attenuation constants in the zinc-sel-

enide coated silver hollow waveguide in the region O ~
b ~ 20. The magnitudes of the attenuation constants in

gently bent waveguides (b s 2) are TMO 1, HE~l, HE~l,

and TEO1 modes, in order. However, as the curvature in-

creases, the attenuation constant of the TEO1 mode be-

comes larger than that of the HE~l mode. IIfI the region, b

~ 18, the magnitudes of attenuation constants are TMOI,

TEol, HE~l, and HEjl modes, in order. This is because

modes change to the linearly polarized mcjde as the cur-

vature increases.

Fig. 6 shows the attenuation constants in the zinc-sel-

enide coated silver hollow waveguide in tlhe region O s
b ~ 200. When the curvature is large, modes are classi-

fied into linearly polarized modes whose polarization di-

l/Rll/m)

lo 0.1 0.2 0.3 0.4.
1

3 -

2 -

:OLJ
4 8 12 16 20

b

Fig. 5. Attenuation constants in the zinc-selenide coated silver hollow

waveguide in the region O ~ b s 20. The upper scale corresponds to the

curvature for the same values of X, no, and Tin Table 1.

l/Rll/m)

b

Fig. 6, Attenuation constants in the zinc-selenide coated silver hollow

waveguide in the region O ~ b s 200. The upper scale corresponds to the

curvature for the same values of A, no, and Tin Table I.

rection is in the x or y direction. It should be noted that

the difference of attenuation constants of the modes with

same polarization is relatively small and also that atten-

uation constants of the two linearly polarized modes along

the x direction are much larger than those of two modes

along the y direction. This indicates that the main factor

which determines the magnitudes of attenuation constants

is the polarization direction.

In Fig. 6, u~~ and CYTMdefined by

Q!TE = # Re (ZTE), (18a)

1
aTM = ~ Re ( y~M), (18b)

are also shown, which are attenuation constants of the TE

and TM modes in sharply bent slab hollow waveguide [9].

Roughly speaking, the attenuation constants of the LPI,

modes whose polarization direction is parallel to the
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l/R[l /ml

so 1 2 3 4
1

2 -
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b

Fig. 7. Attenuation constants predicted by [10] in the zinc-selenide coated
silver hollow waveguide. The modes shown in the figure are selected to

correspond to the modes that we present. The upper scale corresponds to
the curvature for the same values of k, no, and Tin Table 1.

bending plane can be well estimated by the attenuation

constant CITM. However, this does not necessarily mean

that the attenuation constant of the modes asymptotically

approach to CYTM[10]. A relatively large difference is
found between ~T~ and those of LPI, modes whose po-

larization direction is perpendicular to the bending plane.

This difference will be emphasized for the waveguides

where the magnitudes of the surface impedance and ad-

mittance are quite different.

We finally compare our present results of Fig. 6 with

previously published results. Fig. 7 shows attenuation

constants predicted by [10] for the linearly polarized

modes where ~T~ and ~T~ for the corresponding slab

waveguide are also shown for comparison. Qualitatively

similar results are obtained for the linearly polarized

modes changing from TEO1 and TMO1 modes.

IV. CONCLUSION

Based on the vector wave equation, mode structures and

transmission losses of the TEOI, TMOI, and HEZI modes

in uniformly bent circular hollow waveguides have been

evaluated. Electric field distributions and the normalized

transverse phase constant of eigenmodes are determined

by the bending parameter b and the waveguide parameters

ZTE /~o k. T and yTM /n. k. T. It is shown that the TEO1 and
TMOI modes approach the LP mode whose polarization

direction is parallel to the bending plane and the HE21

modes to the LP mode whose polarization direction is per-

pendicular to the bending plane.

APPENDIX

In lower-order cigenmodes of low-loss circular hollow

waveguides, E, is r~presented by

1

(

1 aHz
E,=–j — –—

Ueon ~ r ae
+ j/3 HO

)

(Al)

By using tangential electric and magnetic field compo-

nents, the transverse electric field Ef is represented as

Et = ?E, + 8E0

~.
Y r w Ho + 8Efl

no k.

=.i? (‘H@cos(3-EOsin0
no k. )

+$ ( )‘HOsini3+Eocos8 . (A2)
no k.

At the core-cladding boundary, (A2) is expressed by us-

ing the boundary conditions (2a) and (2b) and axial elec-

tric and magnetic field components as follows:

(Et=l –W zT~HZ Sin 6 – YTE EZ COS e
no k. )

(co/.L()
+$ )—ZTEHZCOS 6 – YTEEZSitl 6 . (A3)

no k.

By considering that the transverse electric and magnetic

field components at r = Tare sufficiently small, the axial

electric and magnetic field components are represented as

1

(

aH@ 1 aHr
E,=–j —— —

ti~on~ ar – ; ao)

1 no k. 8E,.
Y –j———

ti~o n ~ ti~o &

1

(

aE aEy
. –j —

)

~costl+~sinfl , (A4)
no k.

1
HZ=–j —

(-

aEx aEy

)

sint?-~costl .
(AS)

noko ar

By substituting (A4) and (A5) into (A3), we obtain

1
E,=j —

[[
2

no k. ~ (ZTE sin2 6 + y’t’~ cosz @

aEy
+ ~ ( YTM – iTTE)Sh d COS@1
[‘~ ~(yTM–ZTE)SineCOS~

aEy

11 (A6)+ ~ (zT~ COS2 e + YTM Sin2 o) .
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Forthecasethat EX = PX&and EY = PY~O, (lO)is de-

duced.
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