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Transmission and Attenuation of Vector Modes in
Uniformly Bent Circular Hollow Waveguides
for the Infrared

Shin-ichi Abe and Mitsunobu Miyagi, Senior Member, IEEE

Abstract—Electric field distributions and attenuation con-
stants of the eigenmodes in uniformly bent circular hollow
waveguides have been evaluated based on a vector wave equa-
tion deduced from Maxwell’s equations. A diagram represen-
tation of the parameter describing mode properties has been
newly introduced. It is numerically shown that vector modes
gradually approach linearly polarized modes when the bending
radius becomes small. A relation between attenuation constants
in sharply bent circular and slab hollow waveguides is also dis-
cussed where the electric fields concentrate near the outer edge
of the core.

I. INTRODUCTION

IRCULAR hollow waveguides have been studied for

delivering infrared high power [1], [2]. In practical
uses, these waveguides are often bent, hence, electric and
magnetic field distributions are deformed and transmis-
sion losses increase. Therefore, it is important to evaluate
field distributions and losses in bent circular hollow wave-
guides precisely.

In uniformly bent waveguides, a vector analysis was
developed by using perturbation theory [3]. Although the
field deformations and polarization changes in wave-
guides were analyzed in detail, the analysis itself is lim-
ited to the waveguides with a large bending radius. Marhic
et al. analyzed a whispering-gallery waveguide where the
bending is an essential issue [4]. They employed a bound-

ary condition used in the microwave regions which is not.

necessarily applied to infrared waveguides. A ray analysis
was also made by Croitoru et al. which is substantially
based on an approximate scalar equation [5].
In a previous paper [6], we analyzed the lowest eigen-
- mode in bent circular hollow waveguides based on the
scalar equation. The field distributions were first evalu-
ated by assuming that they vanish at the core-cladding
boundary and attenuation constants were then evaluated
by using an integral expression which includes the ap-
proximate fields.
In straight circular hollow waveguides, there exist
TE,,.,, TMy,., HE,,, and EH,,, modes (n = 1,2, - -+, m
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=1, 2, - - -) which are not linearly polarized except for
the HE,;,, modes. When waveguides are bent, many modes
are excited. Therefore, it is important to explore the prop-
erties of vector modes in bent circular waveguides.

In this paper, we treat several lower-order TEy;, TMy,
and HE,, modes. To solve a vector wave equation, we
express a solution of the equation by a linear combination
of linearly polarized modes derived from a corresponding
scalar equation. The mode structures and attenuation con-
stants of the TE,, TM,,, and HE,; modes in bent circular
hollow waveguides have been clarified. Throughout the
paper, the wavelength is assumed to be 10.6 pm of the
CO, laser.

II. FORMULATION

We analyze low-loss circular hollow waveguides for in-
frared laser beams. We assume that the core radius is
much larger than the wavelength of transmitted light and
that the normalized surface impedance zg and admittance
ymm [7] defined at the core-cladding boundary are suffi-
ciently small compared with the impedance and admit-
tance in the core region. We are interested in the wave-
guide whose bending radius is larger than several tens
times of the core radius.

Using the toroidal coordinate system (r, 8, z) as shown
in Fig. 1, the transverse electric field E, with the axial
(z-direction) phase constant 3, satisfies
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+ [n%k% <1 + ZI%cos 0> - BZ}Et =0, (1

in the core region [6], where k; is the wavenumber in free
space. We solve (1) with the boundary conditions at r =
T:

Ey _ wpg

[ AL . 2

H " nok ZTE» (2a)

H, nok,

o= T Y (2b)
z WHo

0018-9480/92$03.00 © 1992 IEEE



904 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES., VOL. 40, NO. 5, MAY 1992

Y,y

6
R -T 5 T

4

Fig. 1. Toroidal coordinate system for bent circular hollow waveguides.

First, we consider the transverse electric field ]73, which
satisfies the following boundary conditions at r = 7
zZre = Yy = 0. 3)
ie.,

E =0. €y

By letting the axial phase constant be B which corre-
sponds to E,, E, satisfies
E,
or?

198,
r or

17,
r? 992

+ [n(z,k% <1 + Zk’;cos 0> - BZJE, =0, ()

in the core region.

Modes which satisfy (4) and (5) are characterized by
linearly polarized modes, which are constructed from even
symmetrical £, and odd symmetrical £, scalar modes with
respect to 6.

We now expand E, and E, by using the Fourier-Bessel
series as follows:

N o] @ . r .
E(, 0) = EJO p§1 A5, <oy,, ;) cos (1), (6a)

Er, 0) = Z Z A2, J <

2 T> sin (v6), (6b)
where 0,, is the pth zero of J,(x). The expansion coeffi-
cients 4;,, A, and the axial phase constants §, and §,,
which correspond to even and odd modes respectively,
are determined by substituting (6a) and (6b) to (5) and
using the orthogonal relations by Bessel or trlgonometnc
functions [6]. It should be noted that Ay, Ay, B., and B,
are a function only of bending parameter 4 [6] defined by

n3kgT?

b:
R

Q)

We now describe how to derive the vector field E;, sat-
isfying the boundary conditions (2a) and (2b) by usmg
fields E, satisfying (3). The method employed here is sim-

Et - [(D] — E,.

ilar to that developed by Snyder er al. [8] who derived
vector modes in weakly guiding fibers fibers from the LP
modes in a scalar wave equation. The essential difference
between weakly guiding fibers and present hollow wave-
guides is that the cladding indices are completely different
in the two cases, i.e., in infrared hollow waveguides the
(complex) refractive index is much higher than that of the
hollow core. However, both waveguides have a very sim-
ilar property in that modes whose axial phase constants
are around ngk, are nearly degenerate. Therefore, it is
easily understood that we are able to construct vector

- modes in even bent hollow waveguides by combining lin-
~ early polarized modes in the scalar wave equation.

Applying Green’s theorem to the surface integral of
[(5)] in the core region, we obtain

aE,

6d =0, (8

(BZ—BZ)H E,-E,dS+<§ E,
S C

where S is a cross sectional area of circular core and the
C is the periphery defined by r = T.

Let us express the transverse electric field E, of vector
modes by linear combinations of the linearly polarized
modes £E, and $E, as

E(r, ) = iP.E, +yPE )

where £ and § are unit vectors in the x and y directions,
respectively, and P, and P, are arbitrary constants to be
determined. As is seen from the subsequent formulation,
there are only combinations of E, and E, which are even
and odd, respectively, with respect to 8, or vice versa.
Since a number of even or odd linearly polarized modes
exist, the combinations of linearly polarized modes should
be considered. However, for the waveguides which will
be treated in Section III, only the combination of an even
linearly polarized mode and an odd linearly polarized
mode with the same mode number is important. There-
fore, we consider the linear combinations of only two lin-
early polarized modes described by (6a) and (6b) in the
subsequent formulation.

We first consider the case that E, = E, and £, = E, in
(9). Since E, should not vanish at » = T in the vector
modes, the transverse electric field at » = T can be rep-
resented as follows [see Appendix]:

Jj . dE, .
E, = % {x {Px o (zrg sin® 8 + ypy cos? 6)

oF,
+ P, —

Y or (yrm — 2Zrp) sin 0 cos 0}

dE,
+ }A’ng?(er — zrgp) Sin 6 cos 0

%19
+ P, a—r" ( z7g cos® 6 + yrm sin’ 0)}] (10)
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_ We now substitute (9) and (10) into (3). By putting
E, = XE,, we obtain

P(B* - BYH + I [P z §> —aEe sin @ 2 de
* ¢ noko * TE C al’
E~ 2
+ Ym é; <-a—e cos 0> dc}
c\ or

O OF, sin 8 cos 0 dc] =0,
ar or

+ P(ymm — Z18) §>C

(11a)
similarly, by putting E, = $E, in (8), we obtain

, ~ 2
=2 ‘ _I an
+——|P —e
G, noko[ ) {ZTE §>c < o cos 0> dc
3E, . \ ’
+ ymm @C <3;— Sin 9> dc}

OF, OF, }

Py(BZ -

—sin f cos 0 dc| = O,

+ P —
(Y™ Zrg) (5)0 or or

(11b)

where E, and E, are normalized such that the integral of
E? or EZ over the cross section is unity. Equations (11a)
and (11b) are simultaneous equations which determine P,,
Py, and (.
By introducing the normalized transverse phase con-
stant U of vector modes defined by
U = Tngk — BH'/?, (12)

(11a) and (11b) are transformed to the matrix equation as

P, P,
Py Py

where elements of M are represented as follows:

(13)

My = 02 + —2 [z T3(§> a—isiﬁezdc
St " nokoT |™E c\ or
dE, 2
+ yuT? (§ <—€ cos 0> dc], (14a)
c\ or
j 3 §> 0E, oF,
M, =M, = ——— — T ZZe o
12 21 » nokoT(yTM Z1E) c or or
+ sin @ cos § dc, (14b)
. - 2
- j oF,
M — 2 3 @ o
= Uy + nokoT[ZTET c <_6r cos 0> dc

OE 2
T3 ° o
+ ymmZ @c < O sin 0>_ dc}, (14¢)
U, and U, are defined by (12) where § is replaced by the
axial phase constants 8, and 3, of even and odd sym-
metrical linearly polarized modes, respectively. As is seen
from (14a)-(14c), vector modes are completely charac-

terized by the bending parameter b and the waveguide pa-
rameters of zrg /noko T and yry /noky T. Two independent
vector modes are derived from (13). When only the term
with » = 1 and p = m remains in (6a) and (6b) in straight
waveguides, bending characteristics of the TM,, and
HES$,, modes [8] are derived.

_ Similarly, considering the case that £, = E, and E, =
E, in (9), two other independent vector modes are de-
rived. For the modes where the term with » = 1 and p =
m is dominant in (6a) and (6b), bending characteristics of
the HES,, [8] and TE,,, modes in straight waveguides are
derived.

III. EiGENMODES IN BENT CIRCULAR HoLLoOwW
WAVEGUIDES

In this section, we numerically evaluate field distribu-
tions and attenuation constants of the TEy, TMy,,
HES,, and HES; modes in bent circular hollow wave-
guides as vector modes. We clarify mode properties of the
zinc-selenide coated silver hollow waveguide which is de-
signed so as the transmission loss becomes minimum, sil-
ica hollow, and sapphire hollow waveguides. The param-
eters which are used in the numerical analysis of each
waveguide are summarized in Table 1.

A. Polarization Properties of Eigenmodes

In order to see mode property changes due to bend, we
newly introduce a parameter Q defined by

Q= P,/P)/(A + |P,/P D'/, (15)

which indicates a relative magnitude between E, and E|.

Fig. 2 shows the parameter Q of the above modes in
silica hollow, sapphire hollow, and zinc-selenide coated
silver hollow waveguides in the complex Q-plane. In
straight waveguides (b = 0), the parameter Q of the TM,,
and HE3, modes is equal to 1/ V2 and that of HE$, and

TEy; modes is —1/ V2. That the value of Q is complex
means that the local electric fields are elliptically polar-
ized with different aspect ratios. When the parameter b
becomes large, the parameter Q in all waveguides ap-
proaches 0 in the TMy, and. HE3; modes, and |Q| ap-
proaches unity in the HEj, and TE;; modes, which means
that the TM,; and TE,; modes change to linearly polar-
ized (LP) mode whose polarization direction is in the x
axis, and the HE5; and HE3, modes change to the LP mode
whose polarization direction is in the y axis.

As described in Section III-B, the electric field distri-
bution of each mode tends to concentrate near the outer
edge of the waveguide around & = 0. This indicates that
the polarization of each mode is quite influenced by the
boundary conditions at § = 0. As the round structure
therefore quite resemble to the slab waveguide, there exist
independent linearly polarized modes whose polarizations
are perpendicular and parallel to the bending plane.

Loci of Q show very different behaviors between the
silica hollow waveguide and others. Loci in the silica hol-
low waveguide tend to vary away from the real axis, while
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, ,  TABLEI :
Zre/noky T and yrp /ngko TIN SILICA, SAPPHIRE, AND ZINC-SELENIDE COATED SILVER
HoLLOW WAVEGUIDES, WHERE \ = 10.6 ym, ny = 1,
and 7 = 0.5 mm

Cladding Material

z1e/Hoko T ‘

yrm/noke T

Silica
Sapphire
, ZnSe-coated-Ag

1.7 x 1073 +759.7 x 1073
1.6 X 107* + j4.5 x 1073
2.7 X 1077 + j2.4 x 1073

8.4 x 107 — j2.9 x 107
2.6 X.107* + j2.0 x 1073
7.6 X 107° — j5.6 x 1073

Im('Q)

HES1: TEor

43,2 1:12
TMo1 ; HES:

1 Be (Q)

7]

y ©
Fig. 2. Loci of Q in silica hollow (a), sapphire hollow (b), and zinc-sel-
enide coated silver hollow waveguides (c), in the complex plane. The num-
bers near curves indicate values of b. A radius of the circle drawn by a
dashed line is 1/+/2.

" Fig. 3. Change of electric field lines of the TEq, (a), TMy, (b), HE3, (),

and HE3, modes (d), due to bent.

loci in others vary almost along the real axis. This differ-
ence comes from waveguide parameters as shown in Ta-
ble I: in the silica hollow waveguide, we have

Re (zrg/noko T) >> Im (zre /noko T), (16a)
 Re (ymu/nokoT) 5> Im (yru/mokoT),  (16b)
and in others, we have
Re (z1e/noko T) << Im (zre/noko T), | (16¢c)
Re (yw/mokoT) << Im (yrm/nokoT).  (16d)

Fig. 3(a)-(d) shows changes of electric field lines of
the TEy;, TMy,, HE3;, and HE3; modes due to bends in
the zinc-selenide coated silver hollow waveguides where
Q is approximately real. One can see how the vector
modes approach LP modes whose polarization direction
is in the x or y direction. '

B. Electric Field Intensity Distributions of Linearly
Polarized Modes : _
As mentioned in Section III-A, eigenmodes in bent cir-.
cular hollow waveguides approach linearly polarized
modes when the parameter b increases, i.e., the curvature
increases. Therefore, we calculate intensity distributions
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b=20

b=50 b=200

Fig. 4. Equi-field amplitude lines of transverse electric field distributions
of linearly polarized even mode (a) and odd mode (b). Equi-field lines
indicate +0.1, £0.3, +0.5, £0.7 and +£0.9, where the maximum ampli-
tude is normalized to unity.

of the even and odd LP,; modes whose nomenclature is
given in a straight waveguide.

Fig. 4(a) and (b) shows equi-intensity lines of the even
and odd symmetric LP;; modes for various curvatures. In
the case of the odd symmetric LP;; mode (b), electric field
distributions tend to concentrate near the outer edge with
maintaining its field profile as curvature. On the other
hand, a very different picture is found for the even sym-
metric mode (a) from that of the straight waveguide. There
are three peaks near the outer edge of the waveguide per-
pendicular to the bending plane. As the waveguide is bent,
inner and outer peaks of field distributions shift toward
the outer edge and approach each other. The outer peak
is larger than the inner peak. Then, the center of the inner
peak may be canceled by the outer peak when the both
peaks approach each other. This is why the inner peak is
separated into two peaks.

C. Attenuation Constants of Eigenmodes

By approximating the real part of 8 by nyky in (12), the
attenuation constant is represented by
Im (U?)

2o = ——y

. 17
ny ko T2 ( )

Fig. 5 shows the attenuation constants in the zinc-sel-

enide coated silver hollow waveguide in the region 0 <

b = 20. The magnitudes of the attenuation constants in
gently bent waveguides (b = 2) are TM,,, HE;;, HE;,,
and TEy; modes, in order. However, as the curvature in-
creases, the attenuation constant of the TE,; mode be-
comes larger than that of the HE3, mode. In the region, b
= 18, the magnitudes of attenuation constants are TMy,,
TE,,, HE;, and HES, modes, in order. This is because
modes change to the linearly polarized mode as the cur-
vature increases.

Fig. 6 shows the attenuation constants in the zinc-sel-
enide coated silver hollow waveguide in the region 0 =
b = 200. When the curvature is large, modes are classi-
fied into linearly polarized modes whose polarization di-

1/R(1/m)

40 , 0.'1 [ 0.‘2

2neke T2a (x107%)

a8 12 18 20

Fig. 5. Attenuation constants in the zinc-selenide coated silver hollow
waveguide in the region 0 = b = 20. The upper scale corresponds to the
curvature for the same values of N, ny, and 7 in Table 1.

1/R(1 /m)
30 T ] T ? T ? T i‘ 1
~ am ;7
‘?‘ 2— .
2 TMo1
“,‘j i "/ HE%}/T—
.g 1k TEo1 //_/ "/_
o~ & /-///‘—.-..{ .........
F L O OhES
%4 80 120 160 200

b

Fig. 6. Attenuation constants in the zinc-selenide coated silver hollow
waveguide in the region 0 < b = 200. The upper scale corresponds to the
curvature for the same values of A, ng, and 7 in Table 1.

rection is in the x or y direction. It should be noted that
the difference of attenuation constants of the modes with
same polarization is relatively small and also.that atten-
uation constants of the two linearly polarized modes along
the x direction are much larger than those of two modes
along the y direction. This indicates that the main factor
which determines the magnitudes of attenuation constants
is the polarization direction.
In Fig. 6, arg and aqy defined by

1
Qg = E Re (z1g), (18a)

1
s Re (ytm), (18b)
are also shown, which are attenuation constants of the TE
and TM modes in sharply bent slab hollow waveguide [9].
Roughly speaking, the attenuation constants of the LPy,
modes whose polarization direction is parallel to the
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1/R(1/m)

ZnokeT2a (x 1072)

Fig. 7. Attenuation constants predicted by [10] in the zinc-selenide coated
silver hollow waveguide. The modes shown in the figure are selected to
correspond to the modes that we present. The upper scale corresponds to
the curvature for the same values of \, ny, and T in Table I.

bending plane can be well estimated by the attenuation
constant ary. However, this does not necessarily mean
that the attenuation constant of the modes asymptotically
approach to aqy [10]. A relatively large difference is
found between arg and those of LP;; modes whose po-
larization direction is perpendicular to the bending plane.
This difference will be emphasized for the waveguides
where the magnitudes of the surface impedance and ad-
mittance are quite different.

We finally compare our present results of Fig. 6 with
previously published results. Fig. 7 shows attenuation
constants predicted by [10] for the linearly polarized
modes where arg and agy for the corresponding slab
waveguide are also shown for comparison. Qualitatively
similar results are obtained for the linearly polarized
modes changing from TE; and TM,; modes.

IV. CoNcLUSION

Based on the vector wave equation, mode structures and
transmission losses of the TEy, TMy;, and HE,; modes
in uniformly bent circular hollow waveguides have been
evaluated. Electric field distributions and the normalized
transverse phase constant of eigenmodes are determined
by the bending parameter b and the waveguide parameters
z1e/Noko T and yry; /ngky T. It is shown that the TE,, and
TM,; modes approach the LP mode whose polarization
direction is parallel to the bending plane and the HE,,
modes to the LP mode whose polarization direction is per-
pendicular to the bending plane.

APPENDIX

In lower-order eigenmodes of low-loss circular hollow
waveguides, E, is represented by

1 /10H
E = —j d z + 7
" J wegn <r a6 JBH0>
= 2oy (A1)

0.
noky

By using tangential electric and magnetic field compo-
nents, the transverse electric field E, is represented as

E, = 7E, + 0E,

= fw—’:’He + 0E,

RoKp

X <ﬂl'2 Hy cos 8 — E, sin 0>
noko

+ 9 <°’—’:’H9 sin 6 + E, cos 0>. (A2)
Mg Ko

At the core-cladding boundary, (A2) is expressed by us-
ing the boundary conditions (2a) and (2b) and axial elec-
tric and magnetic field components as follows:

E =% <—ﬂ9 zreH, sin 0 — yE, cos 0>
noko

+ ¥ <3‘% zpH, cos 0 — yrgE, sin 0>. (A3)
RoKo

By considering that the transverse electric and magnetic
field components at » = T are sufficiently small, the axial
electric and magnetic field components are represented as

o L (o 1o,
e T wegni \ dr 1 96
. 1 @_kgaE,
- wegny wpy Or
.1 [oE 9E,
= —j— [ &&= — g Ad
jnoko<6r cos f + —"sinf |, (A4)

_ . 1 [3E, 9E, (AS)
Hz— Jn0k0<3r sme—Fr—cosO .

By substituting (A4) and (AS5) into (A3), we obtain

‘ Ry ko r (ZTE s1n YTMm €OS )
OE,
+ 5‘; (yTM - ZTE) sin 6 cos 6

A\ OF, .
+y {a— (yrm — z7g) sin 6 cos 6
r

oE

+ —a—y (zrg €08° 0 + ypy sin® 0)}} ‘ (A6)

r
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For the case that E, = P,E, and E, = P /E,, (10) is de-
duced. ' o
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